iPIFO: A Network Memory Architecture for QoS
Routers

Feng Wang and Mounir Hamdi
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
{fwang, hamdi}(@cs.ust.hk

Abstract' — Routers need memories to store and forward
packets. More than that, routers use memories to schedule flows
according to their quality-of-service (QoS) requirements. The
simple first-in-first-out (FIFO) queue memory is insufficient to
provide QoS guarantees. Most current routers are based on the
virtual-output-queue (VOQ) memory management and use heu-
ristic algorithms, such as iSLIP or DRRM, to schedule packets.
On the other hand, push-in-first-out (PIFO) queue memory has
also been proposed as a model for routers to meet the QoS re-
quirements. The PIFO queue does not need a scheduler since
packets are always first-out from the queue head. However, due
to the sorting-related problems of the push-in operation, it is
normally supposed impractical to build the PIFO queues in real
hardware. We try to touch this problem in this paper and pro-
pose an indexed PIFO queue (iPIFO) architecture and a memory
management algorithm on it. We believe it is a feasible solution
to bring the PIFO queue to practice.

L INTRODUCTION

One of the fundamental differences between circuit
switches and packet routers lies in that routers need memories
to place packets. Memories in routers are not only used in
case of network congestion [1], they are also indispensable to
provide quality-of-service (QoS). In a simple router, it may
treat incoming packets first-come-first-served using one sin-
gle FIFO queue memory. However, in a QoS enabled router,
some packets may give way to other packets with higher pri-
orities. Packets got delayed should find a place to stay, or get
dropped in short of memories. How to schedule packets ac-
cording to their QoS requirements rather than just relying on
their arriving orders needs the help of more sophisticated
memory systems.

The virtual-output-queue (VOQ) memory architecture has
been prevailing for rather a long time in literature. Most QoS
fair queuing algorithms assume the per-flow queues as basic
architecture, e.g. weighted round-robin (WRR) and deficit
round-robin (DRR) [2]. (We note here that we may be am-
biguous in talking about the per-flow queues and the VOQ,
since we only focus on the multi-queued memory systems in
this paper, regardless of per-flow based or per-output based.)
Based on the VOQ technique, many scheduling algorithms
are designed, such as iSLIP [3], FIRM [4], and DRRM [1].

! This work is supported under RGC HKUST6260/04E .

1-4244-1206-4/07/625.00 ©2007 |IEEE

They are proved practical in terms of packet throughputs and
delays.

The basic 1dea behind the VOQ memory management is to
separate packets belonging to different outputs/flows in the
nput side. In this way, ill-behaving flows will have little con-
trol over other friendly flows. Therefore, it is possible to pro-
vide qualities of service to individual {lows. However, we can
see that the implementation complexity scales with the num-
ber of queues. It is a challenging task to design a finely
granulated VOQ memory in today’s core routers where the
number of queues is normally at the order of millions.

Another dimension to solve the QoS problem 1s to use the
push-in-first-out (PIFO) queue. This is a more generalized
model to provide QoS than the VOQ based models. It 1s ob-
vious to see that even with the VOQ memory packets are still
switched from the input port sequentially, which they actually
form a logical departure queue and their departure orders are
calculated by the fair queuing algorithms. The most well-
known theoretical works in QoS scheduling are the weighted
fair quewing (WFQ) [5] and its packetized version GPS [6].
According to the WFQ algorithm, the incoming packet first
gets a departure order issued by the scheduler and then inserts
into the departure queue. Packets depart from the queue one
by one from the head. Conceptually, this departure queue can
be viewed as an instance of the push-in-first-out (PIFO)
queue.

However, the PIFO queue has long been assumed impracti-
cal since the inserting/pushing operation can be easily re-
duced to a sorting problem. The fastest sorting algorithm we
know has a time complexity of O(Nlog N), where N is the

number of present packets in memory in our problem here.
Using heap sort [7] as an example, inserting or extracting a
packet takes O(log N)time complexity. This is too slow and

not practical for hardware implementation, especially in the
core routers where packets come in every several nano-
seconds.

We try to touch this problem and propose an indexed PIFO
queue (iPIFO) architecture in this paper. We believe we are
among the first to think about real implementations of the
PIFO queue, rather than just referring to it as a theoretical
model for proofs. The iPIFO solution only requires the mem-
ory supports dynamic allocation and multiple concurrent

reads. We believe it is of both practical and theoretical value
and can be ready in hardware implementations.

The rest of this paper is organized as follows. We introduce
the PIFO queue background and formulate the model in sec-
tion IT. The iPIFO memory architecture and detailed opera-
tions on it are shown in section III. In section IV, we prove
the properties of the iPIFO memory architecture. We talk
about some practical considerations in section V. Then we
have a conclusion.

II. THEIPIFO QUEUE ARCHITECTURE
A. Problem statement: the PIFO queue

The push-in-first-out (PIFO) queue can be defined accord-
ing to the following three rules.

1. Amiving packets are placed at (or, pushed in) an ar-
bitrary position in the queue;

2. The relative order of packets in the queue does not
change once packets are in the queue, 1.e., cells in
the queue canmot switch positions; and

3. Packets may be selected to depart from the queue
only from the head.

The PIFO queue is logically a single queue in the memory.
Incoming packets will be inserted/pushed into the queue to a
position which is calculated by the queuing algorithm, such
as WFQ [5] and GPS [6]. Their positions may change due to
later incoming packets. For example, a packet is inserted in
the position 4 at its arrival. It may be pushed back to position
5 if there is another packet with higher priority and should be
inserted into a position less than 4. It may be further pushed
back if more packets with higher priorities arrive subse-
quently. However, once two packets have been inserted into
the queue, they cannot switch their positions.

The main difficulty in building the PIFO queue comes from
the first rule. This dictates a dynamic allocation memory sys-
tem. However, dynamic memory is normally implemented
with [inked lists, which make the insertion operation costly to
implement since elements cannot be statically addressed. The
most efficient insert operation in linked date structures comes
from the heap-sort [7] algorithm that has an O(log N) time
complexity®. However, there are two main problems in apply-
ing this heap-sort algorithm. First, the msert operation of
O(log N) time 1s still too large for urgent-to-leave packets.

Secondly, to dequeue a packet from the heap also needs
O{log N) time to perform, which is definitely impractical.
Fortunately, the third rule helps us circumvent this problem.

We observe one important property of the PIFO queue. Pack-
ets far from the head will wait for some time lo depart Put

1t can be proven that O(logh) is the lowest bound for the inserting opera-
tion. Otherwise, the sorting algorithm based on the heap data structure will
have atime complexity less than O(NVlogh), which is false.

another way, the farther is the packet from the head, the later
it departs. We utilize this property and propose an indexed
PIFO (iPIFO) queue architecture. Then we devise an efficient
algorithm to perform the two basic operations on the iPIFO:
insert and dequeue. The basic intuition behind the algorithm
is that we distribute weighted complexities to different pack-
ets according to their final positions. The earlier will the
packet depart, the less complex is the insert operation. Al-
though the overall complexity may be larger than
O(NlogN), we prove that every packet has sufficient ime

to finish the inserting operation before its time to depart.
B. The indexed PIFO (iPIFO) queue architecture

We use a doubly linked list to implement the PIFO queue,
as shown in Figure 1. Every packet in the queue has two
pointers. One points to the next packet and the other points to
the previous one. Packets are inserted into the positions cal-
culated by schedulers. Packets depart from the list head.

We use another small memory to index the doubly linked
list, which is named index memory (IM). The IM not only
accelerates the inserting process, but can distribute weighted
complexities to packets according to their inserting positions
as well. Since we use an additional index memory to enhance
the performance of the doubly linked list, we call this archi-
tecture indexed PIFO (iPIFO) queue memory system.

Index Memory
(OS] — I —

[#1]x]

2° 2! 2 x

d ¥ S T T
[Tt [T [gt [[it [2L [pkt [> g o [pht [L [pit []

1 2 3 4 2 2k
head PIFO queue tadl

Figure 1: The iPIFO memory system

The size of the IM 1s n+1. It 1s statically allocated and can
be directly addressed. The IM stores the selected #+1 pack-
ets addresses in the doubly linked list. We call the static ad-
dresses (0,1,2...n) in IM indices. We use i to represent the

index of the IM and [to represent the mapped position in the
PIFO queue. The mapping function is the following:

1=2{0<i<n)

The index 7 1n the IM always points to the tail of the PIFO
queue which remembers the last packet address in the queue,
as shown in Figure 1. We note that index 0 points to the head
of the PIFO queue.

To get a feel of the size for real hardware implementation,
consider a normal 10 Gé storage of the network memory. It
may contain at most 32 million packets, assuming the mini-
mum packet size of 40 bytes. The number of indices main-

tained by the IM is less than log, 32x10° < 25 . Therefore,
the index memory is small enough to be built on-chip into the

scheduler chip.

We define an index 1s valid if it points to a packet in the
PIFO queue. Otherwise, the index value is assigned NULL.
For example, in Figure 1, indices (i+1,i+2,.n—1)are all
assigned Null. The total number of packets in the PIFO queue
18 2 +k(0<k<2).

111 OPERATING ON THE IPIFO QUEUE

The iPIFO memory system mainly provides two basic op-
erations to the scheduler:
1. dequeue a packet from the head of the PIFO queue
2. insert a packet into an arbitrary position in the PIFO
queue, as the scheduler requires

In the following presentation, we use ‘PIFO queue’ to refer
to the doubly linked list in Figure 1 and use ‘iPIFO queue’ to
refer to the whole memory system, including the IM.

A. Degueue a packet from the iPIFO queue

It is very simple for the iPIFO queue to dequeue the head
packet. It just gives out the packet pointed by the O-th index
and updates all indices in the IM. All valid indices except the
n-th index change their pointers to the next packets of their
original ones.

For the last valid index except », e.g. i in Figure 1, a little
more work should be carried out. It becomes NULL if the
index i points to the same packet as the tail does. Otherwise,
it changes its pointer to the next packet of its original one.

B. Inserting a packet into the iPIFO queue

Here comes the most essential and difficult part of the
1IPIFO queue operation, mserting a packet into an arbitrary
position. The position where the incoming packet should in-
sert 1s calculated by the queuing algorithms, such as the WFQ
[5] or GPS [8].

The remainder of this paper mainly talks about how to in-
sert a packet into the position p correctly and efficiently. We
assume that before the packet’s arriving, there are

2" + k(0 < k < 2") packets presenting in the PIFO queue. That
1s to say, in the IM, indices (0,1,..7) are really pointing pack-
ets in the PIFO queue, while indices (7 +1,..n—1) are NULL.

The m-th index points to the tail packet in the PIFO queue.
We denote the position of the last packet fail =2' +k .

The insert operation can be elaborated in three phases.

Phase 1: find the critical interval containing p

We define the interval [27,2/*") as the critical interval for
p. if 27 < p<2/"'(j<i). The critical interval is unique for a
particular p, as shown in Figure 2.

If p=2 , the crtical interval of p is defined as
[2,2 +k+1].

Index Memory
(B0 B [7] —]

i

S 5 et O o i P
7 ¥

Figure 2: Critical interval of p
Phase 2: update indices in the IM

We use the pseudo-code below to explain how to update the
indices in the IM. The algorithm is very simple since the af-
fected indices are just those whose mapped positions are lar-
ger than p and they just have to point one packet before their
current pointed packets. When the total number of packets
reaches 2" | the index i +1 should be validated and peints to
the last packet in the PIFO queue. For simplicity of the pres-
entation, we assume p falls into the critical interval of

[27,2"),(j<i) . Tt is an easier job if p falls into
[2,2 +k+1].

Update Indices ()
IF p=2/
Insert the packet to position 27
Change indices forward (j, j+1,..1)
EXIT

ELSE
Change indices forward (j+1,7+2,...,1)

GOTO phase 3
END TF
Change Indices Forward (s, I)

Every index in(s,..[) changes its pointer to one packet pre-

vious to their original one

Pseudo-code 1: update affected indices

Phase 3. insert the packet into the critical interval

This 1s the most time-consuming part in the iPIFO memory
svstem. From phase 2, we can see that if p happens to be the
boundary of the critical interval, the packet is inserted to the
doubly linked list directly and all indices update correspond-
ingly. However, if p falls into somewhere middle in the criti-
cal interval, we have no fast way to locate the position other
than just searching from the boundary packet since the data
structure is a dynamically allocated linked list. We state the
detailed searching algorithm below and prove in the next sec-
tion that an incoming packet always has sufficient time to
find its position, no matter where it is.

Intuitively, if p is in the first half part of the critical interval,

we search p from the left boundary of the interval. If p is in
the second half part of the critical interval, we search p from
the right boundary. Searching in this way is not only a con-
sideration of efficiency, but very important to maintain
proper packet orders as well, which we will prove later.

Find Location (p)

If pe(2/,2/ +2/7], the incoming packet moves in tail di-
rection along the linked list from position 2/ until it has
passed p—27 packets. The packet inserts there and maintains

proper forward and backward pointers in the doubly linked
list.

If pe(2/+2/7,27", the incoming packet moves in head
divection along the linked list from position 2" until it has
passed 2/*' — p packets. The packet inserts there and main-

tains proper forward and backward pointers in the doubly
linked list.

Pseudo-code 2: find position p

Iv. ANALYSIS OF THE IPIFO ALGORITHM

For dequeuing a packet out of the 1PIFO queue, it only in-
volves updating at most # indices (# is normally less than 25
for a large network memory of 10 Gb size) and every index
Just changes its pointer to one packet next.

For mserting a packet into the 1PTFO queue, phase 1 and 2
are trivial tasks since they only involve updating several indi-
ces in IM. Phase 3 is the most time-consuming part.

We define a #ime slot to be the smallest time gap between
two consecutive incoming packets to the 1PIFO queue. It 1s
obvious to see that packets can endure some time slots delay
in finding their positions if it is not urgent to leave. We prove
that under a trivial assumption, our insert algorithm guaran-
tees packets be ready in their proper positions when it is time
for them to depart.

Assumption: In phase 3 of the insert operation, when
searching its position, the incoming packet advances for-
ward/backward more than one packet in one time slot along
the doubly linked list.

This assumption is very trivial. One time slot is at least the
time for a packet to be written in the memory and it is for
sure larger than the time to read an address from the memory.

Proposition 1: 4 packet is always ready in its final location
of the PIFO queue before the time for it to departure.

Proof Consider a packet 4 to find the location p, and the
critical interval of p is[27,2") . According to phase 3, the
number of packets 4 will search is less than the length of the
critical interval 277" -2/ =27,

J+

Since 27 < p <27 | the number of packets before the criti-

cal interval of p is 2/, and the queue takes at least 2/ time
slots to switch those packets out. Therefore, packet 4 has
sufficient time to find its location p before the queue starts to
switch out any packet from its critical interval, including it-
self.

A similar proof can be obtained if the critical interval of p 1s
[2°,tail].

Proposition 2: [f several packets fall into the same critical
interval and search their positions simultaneously, they can
still find their proper positions in the final PIFO queue.

Proof: Take a packet 4 as an example. Without loss of gen-
erality, we assume A is searching position p from the left

boundary of the critical interval — position 2/.

It suffices to prove that no successive incoming packets can
Jjump into the interval between A’s current position and its

final position p while 4 advances to p, so that passing p— 2
packets is correct for 4 to find its final position.

The successive incoming packets felling into the same criti-
cal interval as 4 can be divided into two parts. The first part
of packets search from the left boundary — position 27, and
the second part of packets search from the right boundary —
position 27"

We first prove that the packets searching from the lefi
boundary carmot catch up with 4. Tt suffices to prove that the
left boundary will not catch up with 4 while 4 1s advancing to
its final position. Since the left boundary can only move one
packet backward in the tail direction due to a head packet’s
departure, it can move 1n the tail direction at most one posi-
tion in one time slot. According to the assumption, the left
boundary cannot catch up with packet 4, thus, neither do the
successive arriving packets searching from the left boundary.

We then prove the successive packets searching from the
right boundary of the critical interval cannot jump into 4’s
way to its final position. According to our algorithm, it is
easy to see that the number of packets 4 moves over is less
than

2J'+1 . 2J'
T i

While the distance from p to the right boundary is larger
than

it (2 gy =l

2

In addition, the right boundary can move at most one packet
forward in the head direction due to an incoming packet in
one time slot. Therefore, successive arriving packets search-
ing from the right boundary of the critical interval of p cannot
jump into 4’s way to its final position. Please note here that
after 4 has inserted into its position, packets from the right
boundary may jump over 4.

Thus, we prove that once packet 4 starts searching from the
left boundary, no successive incoming packets can jump into

its way to the final position p. Therefore, passing over p—2’
packets guarantees packet 4 to find its proper position.

Similar proof can be obtained for packets searching from
the right boundary of the critical interval.

In summary, we have proven that in the IPIFO memory sys-
tem, every incoming packet has sufficient time to find its
memory position before it 1s scheduled to depart. All incom-
ing packets search in the 1IPIFO memory system independ-
ently and they are proven not to interfere with each other un-
der our memory management algorithm.

V. PRACTICAL CONSIDERATIONS

To implement the 1PIFO memory system, it is required that
we employ memories supporting dynamic allocations. This 1s
dictated by the inserting operation in the PIFO rules. It is
common practice to build large capacity dynamic memory
systems with current technology.

In addition, as we can see from the proofs above, the iPIFO
memory system should support one write and multiple read
operations simultaneously. In every one time slot, there is at
most one packet being written into the memory, while there
may be multiple address reads from packets searching for
their correct positions. For this purpose, a Concurrent Read
Exclusive Write (CREW) PRAM[7], where multiple proces-
sors can read from a cell, but only one write to it, will suffice.

VL CONCLUSIONS

In this paper, we try to build a practical push-in-first-out
(PTFO) memory system, which is normally only a theoretical
model in analyzing QoS schedulers and assumed impractical
to implement.

We first point out an interesting property that is inherent in
the PIFO queue memory. That is, packets far from the head
can wait for some time to depart. This allows us to distribute
weighted complexities to packets according to their final po-
sitions. Then we build an indexed PIFO (iPIFO) memory
system and design an practical memory management system
on it.

The iPIFO algorithm only requires the memory support dy-
namic allocation and multiple concurrent reads. With current
memory technologies, we believe that our solution is feasible
to implement in common hardware for high performance
routers supporting quality-of-service guarantees.

[1]

(2]

(3]

[4]

5]

(6]

(7]

REFERENCES

H. J. Chao and J. S. Park, "Centralized contention resolution
schemes for a large-capacity optical ATM switch," in Proceed-
ings of IEEE ATAM workshop, 1998.

M. Shreedhar and G. Varghese, "Efficient fair queuing using
deficit round robin," in Proceedings of ACM SIGCOMM, 1995.

N. McKeown, "The iSLIP scheduling algorithm for input-
queued switches," I[EFE/ACM Transactions on Networking,
vol. 7, pp. 188-201, 1999.

D. N. Serpanos and P. I. Antoniadis, "FIRM: a class of distrib-
uted scheduling algorithms for high speed ATM switches with
multiple input queues,” in Proceedings of IEEE INFOCOM,
2000.

Demers, 8. Keshav, and S. Shenker, "Analysis and simulation
of a fair queuing algorithm," Journal of Internetworking: Re-
search and Experience, 1990.

Parekh and R. Gallager, "A generalized processor sharing ap-
proach to flow control in integrated services networks: the sin-
gle node case," IEEE/ACM Transactions on Networking, vol. 1,
pp. 344-357, 1993,

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, In-
wroduction to Algorithms (2nd edition): The MIT Press, 2002.

